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Abstract
We consider the linear stability of a cylindrical rotating jet of pure superfluid
held together by surface tension. A necessary and sufficient condition for
stability to axisymmetric disturbances is derived which corresponds to that of a
classical inviscid fluid. For axisymmetric disturbances we find that the vortex
tension does not affect the range of unstable axial wave numbers, only the
temporal growth rate and the most critical wave number. A sufficient condition
for the stability of a general disturbance is derived which corresponds to that
of a classical inviscid fluid. We find for non-axisymmetric disturbances, that
the vortex tension increases the range of unstable wave numbers. The temporal
growth rates of the unstable azimuthal modes increase with vortex tension.

PACS numbers: 47.37.+q, 47.15.Fe, 47.20.Dr

1. Background and motivation

Helium is the only substance that remains liquid at the temperature of absolute zero at
atmospheric pressure. At zero Kelvin helium is entirely superfluid, that is to say it is inviscid
and flows without any viscous dissipation. At finite non-zero temperatures a fraction of
helium becomes viscous, but as this fraction is negligible at temperatures below 1 K which
are easily attained in the laboratory, we shall be concerned only with the motion of the
superfluid. What makes the dynamics of the superfluid particularly interesting is the existence
of vortex filaments. The key property of a superfluid vortex filament is the quantization of the
circulation [1], ∮

C

v · dl = � (1)

where v is the superfluid velocity field, � = 9.97 cm2 s−1 is the quantum of circulation (the
ratio of Plank’s constant and the mass of one helium atom) and C is an arbitrary integration
path around the axis of the filament. Superfluid vortex filaments appear spontaneously when
helium is rotated. It is found that N = 2�/� vortices per unit area thread the liquid, all
aligned along the direction of rotation Ω.
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Quantum effects are important only within the vortex core radius a0 ≈ 10−8 cm. The
smallness of this region and the fact that, in typical laboratory conditions (0 < � <

10 rad s−1) N is rather large, motivated the development of a hydrodynamic model of
superfluidity [2, 3] often referred to as the HVBK model. The basic idea of this model
is that a fluid particle contains a large number of vortices; hence superfluid vorticity (which is
discrete in nature) is approximated as a continuum. The model was used with success [4–6]
to explain transitions which were observed [7] in the Taylor–Couette flow of helium at finite
temperatures.

Our work is motivated by the renewed interest [8] in some fundamental aspects of the
HVBK model and by recent experiments with magnetically levitated superfluid drops [9, 10].
The experiments indicate that free surface configurations (e.g., drops and jets) are ideal testing
grounds for the principles of superfluid hydrodynamics because they can be easily put into
oscillation or rotation. The aim of this paper is to investigate the stability of a rotating
superfluid jet, a simple geometry which has not been studied yet. In particular, we want to
identify the difference between the motion of a classical inviscid Euler jet and the motion of
a pure superfluid jet.

2. Model

The governing HVBK equations at zero temperature are

∂v

∂t
+ (v · ∇)v = − 1

ρ
∇p − νsω × (∇ × ω̂) (2)

∇ · v = 0 (3)

where ρ ≈ 0.145 g cm−3 is the superfluid density, p is the pressure, ω = ∇× v is the vorticity
and ω̂ = ω/|ω| is the unit vector in the direction of vorticity. The vortex tension parameter
νs = (�/4π) log(b0/a0) has the same dimension as kinematic viscosity but physically it is
very different: it represents the ability of a vortex line to oscillate due to vortex waves which
can be excited on the vortex lines themselves. b0 = (|ω|/�)−1/2 is the intervortex spacing.

The basic unperturbed state that we wish to investigate is that of an infinitely long,
incompressible cylindrical column of superfluid helium, of radius a rotating rigidly at constant
angular velocity �, about its axis, surrounded by a vacuum.

We non-dimensionalize the equations and boundary conditions taking the length scale
to be the radius of the unperturbed jet a, and natural time scale (ρa3/γ )1/2, where γ =
0.35 dyne cm−1 [11] is the surface tension parameter. This yields two dimensionless
parameters,

β =
(

ρ

aγ

)1/2

νs (4)

which gives a non-dimensional measure of the vortex tension parameter and the non-
dimensional angular velocity, ω, defined by

ω =
(

ρa3

γ

)1/2

�. (5)

Henceforth, all quantities will be non-dimensional unless stated otherwise.
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3. Linear stability analysis

We introduce cylindrical polar coordinates (r, φ, z) with the z-axis aligned along the axis of
the cylindrical jet. In the unperturbed state, the free boundary is given by r = 1 and the
velocity takes the form vo = (0, ωr, 0) in a frame of reference such that the net axial velocity
is zero. The pressure inside the jet is given by po = 1 + ω2(r2 − 1)/2.

In the perturbed state we denote the shape of the free boundary as r = 1 + η(φ, z, t) and
look for solutions u, P, where

v(r, φ, z, t) = vo + u(r, φ, z, t) (6)

p(r, φ, z, t) = po + P(r, φ, z, t). (7)

Substituting these expressions into the governing equations (2) and (3), assuming the
perturbation quantities u = (ur , uφ, uz) to be small, we obtain the following linearized
equations:

∂ur

∂t
+ ω

∂ur

∂φ
− 2ωuφ = −∂P

∂r
− β

(
∂2uφ

∂z2
− 1

r

∂2uz

∂φ∂z

)
(8)

∂uφ

∂t
+ ω

∂uφ

∂φ
+ 2ωur = −1

r

∂P

∂φ
− β

(
∂2uz

∂r∂z
− ∂2uφ

∂z2

)
(9)

∂uz

∂t
+ ω

∂uz

∂φ
= −∂P

∂z
(10)

1

r

∂

∂r
(rur) +

1

r

∂uφ

∂φ
+

∂uz

∂z
= 0. (11)

In order to solve the system we need boundary conditions. These take the form of a
kinematic and dynamic condition on the free surface. The kinematic condition, which ensures
that fluid particles on the surface remain on the surface, may be expressed as

D

Dt
(r − 1 − η(φ, z, t)) = 0 on r = 1 + η(φ, z, t) (12)

which may be linearized to give the condition

ur = ∂η

∂t
+ ω

∂η

∂φ
on r = 1. (13)

The dynamic boundary condition ensures that at any point on the surface the pressure
must be balanced by the normal force due to surface tension. In dimensional form this is given
by γ (1/R1 + 1/R2), where R1 and R2 are the principal radii of curvature of the perturbed free
boundary. Substituting the perturbed solutions into this force balance and linearizing give the
condition

P = −ω2η − η − ∂2η

∂φ2
− ∂2η

∂z2
on r = 1. (14)

We seek a solution for u, P and η by applying normal modes in the form

u = (̂ur(r), ûφ(r), ûz(r)) exp(σ t + i(kz + mφ)) (15)

P = p̂(r) exp(σ t + i(kz + mφ)) (16)

η = η̂ exp(σ t + i(kz + mφ)) (17)
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where the axial wave number k � 0 and azimuthal wave number m = 0, 1, 2, . . . . In general
the temporal exponent σ = σ1 + iσ2 is complex and is determined in terms of the other
parameters of the system. The problem is linearly stable if σ1 � 0 and linearly unstable if
σ1 > 0.

Substituting these forms of the solutions into (2) and (3) gives

sur − 2ωuφ = −dP

dr
− β

(
−k2uφ +

mk

r
uz

)
(18)

suφ + 2ωur = − imP

r
− β

(
ik

duz

dr
+ k2ur

)
(19)

suz = −ikP (20)

1

r

d

dr
(rur ) +

im

r
uφ + ikuz = 0 (21)

and substituting into the boundary conditions (13) and (14) gives

ur(1) = sη (22)

P(1) = −(1 + ω2 − m2 − k2)η (23)

where s = σ + imω and the hats have been omitted for clarity.
Eliminating ur, uφ, uz from the above equations yields the following equation for P:

1

r

d

dr

(
r

dP

dr

)
− m2

r2
P − l2P = 0 (24)

where

l2 = (s2 + (2ω + βk2)2)k2

s2 + βk2(2ω + βk2)
. (25)

This has solution P = AIm(lr), where Im is the modified Bessel function of the first kind and
A is a constant. The corresponding term involving Km(lr) has been discarded as the pressure
must be bounded at r = 0.

In order to apply the boundary conditions (13) and (14) we need to express ur in terms of
pressure. This can be found to be

ur = −A

r

{
2imω

s2 + (2ω + βk2)2
Im(lr) +

k2r

ls
I ′
m(lr)

}
. (26)

Applying the boundary conditions yields the following eigenvalue problem:

s2 =
{

k2

l

I ′
m(l)

Im(l)
+

2imωs

s2 + (2ω + βk2)2

}
(1 + ω2 − m2 − k2) (27)

with l as in (25) and I ′
m(l) = dIm(l)/dl.

4. Planar disturbances (k = 0)

In the case when k = 0, when the disturbances are restricted to planes perpendicular to the
axis of the cylinder, one can see from equations (18)–(21) that the vortex tension effects are
no longer present in the equations. Thus, the resulting problem reduces to that of planar
disturbances of an inviscid rotating jet. The stability criterion for this disturbance was first
considered by Hocking and Michael [12] who showed that the condition for stability is

ω2 � m(m + 1).
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5. Non-planar disturbances (k �= 0)

5.1. Axisymmetric perturbations

We shall start by considering axisymmetric disturbances. Taking m = 0 the problem reduces
to solving

s2 = k2C(l)(1 + ω2 − k2) (28)

where C(l) = l−1I1(l)/I0(l) together with equation (25) which contains the vortex tension
parameter β. We have shown in the appendix that a sufficient condition for stability of the
jet to axisymmetrical disturbances is k2 � 1 + ω2. We shall demonstrate that this is also a
necessary condition.

In the appendix we have shown that s2 is real for axisymmetric disturbances; thus stability
will only occur if s2 � 0. From (25) we see that l2 must also be real and rearranging we find

s2 = (2ω + βk2 − βl2)

l2 − k2
(2ω + βk2)k2. (29)

Substituting into (28) gives

1

C(l)
= X

(
l2 − k2

βl2 − βk2 − 2ω

)
(30)

where

X = − (1 + ω2 − k2)

2ω + βk2
. (31)

From (29) we see that stable conditions only occur when all the roots of (30) are purely
imaginary or are real with either |l| < k or |l| �

√
k2 + 2ω/β. The magnitude of the

real roots may be found by considering the intersections of the graphs of 1/C(l) and
X(l2 − k2)/(βl2 − βk2 − 2ω). The first graph is an even function of l which is monotonically
increasing for positive l which has a minimum value of 2 when l = 0 and is of order l for
large values of l. The roots occur in the ranges |l| �

√
k2 + 2ω/β and |l| < k if X � 0 and in

the range k < l <
√

k2 + 2ω/β for X < 0. The column is therefore stable to axisymmetrical
disturbances unless X < 0 or the column is only stable when k �

√
1 + ω2. Thus unstable

disturbances exist for axial wave numbers in the range 0 < k �
√

1 + ω2. This corresponds to
the findings of Hocking [13] for the case without vortex tension. Thus the presence of vortex
lines does not alter the range of unstable axial wave numbers.

To compute the growth rates of the unstable disturbances, we use a Newton–Raphson
method to converge to real values of s and l for 0 < k �

√
1 + ω2 given values of the

parameters β and ω. Plots of the unstable growth rate σ1 against axial wave number k for
increasing values of β are plotted in figures 1 and 2 for angular velocities ω = 1 and ω = 5,
respectively. Figures 1 and 2 show that while leaving the range of unstable axial wave numbers
unaltered, the effect of increasing the vortex tension is to increase the temporal growth rate up
to a limiting form which occurs as β → ∞. Thus the vortex tension acts in direct contrast to
the effect of fluid viscosity [14].

Considering the case of infinite β in particular, we see from equation (25) that l → k as
β → ∞. Therefore the eigenvalue problem reduces to

s2 = k2C(k)(1 + ω2 − k2).

This is similar to the eigenvalue problem that results from considering the non-rotating inviscid
jet, with the 1 replaced by 1 + ω2 [15].
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Figure 1. Values of σ1 for the unstable axisymmetric modes rotating with angular velocity ω = 1,
plotted as a function of k for increasing values of β = 0, 0.01, 0.1, 1, 10, ∞ as indicated by the
arrow. The asterisks represent the value of k = kmax at which σ1 is maximum.

Figure 2. Values of σ1 for the unstable axisymmetric modes rotating with angular velocity ω = 5,
plotted as a function of k for increasing values of β = 0, 0.01, 0.1, 1, 10, ∞ as indicated by the
arrow. The asterisks represent the value of k = kmax at which σ1 is maximum.
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β

kmax(β)

kmax(0)

ω = 1

ω = 5

ω = 0.5

ω = 10

ω = 50
ω = 0.1

Figure 3. Values of kmax(β)/kmax(0) plotted against
√

β for various values of ω. The dotted line
corresponds to ω = 0.

Another interesting finding comes from looking at the axial wave number kmax at which
the value of σ1 is greatest, these points are indicated by asterisks in figures 1 and 2. For a
given value of ω and β this will give the most unstable wavelength. Considering figure 1 we
see that kmax increases monotonically with β, that is for a superfluid jet rotating with angular
velocity ω = 1, the most dominant wave number increases with vortex tension and is always
greater than that for an inviscid jet. Considering figure 2, in which the jet is rotating with
angular velocity ω = 5, we see that the most unstable wave number of a superfluid jet is
always greater than that of an inviscid jet as in the previous example. However, the increase
is no longer monotonic. As the vortex tension increases kmax increases to a maximum value
and then decreases slightly as β → ∞.

This effect is illustrated more clearly in figure 3 in which the relative value of kmax with
respect to that of a classical inviscid jet, is plotted against

√
β for various values of ω. One

can see that at moderate angular velocities (ω = 0.5 to 10) the critical axial wave number of
the most unstable mode increases initially with vortex tension; however, for the higher angular
velocities in this range kmax reaches a maximum and decreases as β → ∞. For large values
of ω (ω = 50) the critical wave number relative to a classical inviscid jet decreases initially
before increasing to a level higher than for a classical jet. A similar effect is noticed at smaller
angular velocities (ω = 0.1), though the effect is less pronounced. From figure 3 we see
that for certain values of ω and β there is a marked difference between the critical axial wave
number at which a superfluid jet with and without vortices becomes unstable (an increase of
13% for ω = 1 and β = 1).

5.2. Non-axisymmetric perturbations

We shall now turn our attention to the non-axisymmetric modes. In this case s2 is no longer
always real and no necessary condition for linear stability has been obtained. However,
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k

σ1

increasing β

Figure 4. Values of σ1 for the m = 1 mode rotating with angular velocity ω = 1, plotted as a
function of k for β = 0, 0.01, 0.1, 1, 5, 10, 50, ∞.

following Pedley [16] we have proved in the appendix that a sufficient condition for linear
stability is

1 + ω2 − m2 − k2 � 0. (32)

For given values of the wave numbers m, k and parameters ω, β equations (25) and (27)
were solved using Newton–Raphson iteration on the real and imaginary parts of s and l,
respectively. The mode is unstable provided Re(s) �= 0 since if (s, l) is a solution then so is
(−s∗, l∗) where ∗ represents the complex conjugate.

Results for the m = 1 mode at angular velocity ω = 1 are presented in figure 4 for various
values of β. From (32) only the m = 0 and m = 1 mode may be unstable for rotation rates up
to ω = √

3. One can see that as β increases the range of unstable axial wave numbers increases
together with the maximum value of σ1. Comparing with the results from the axisymmetric
case (figure 1) one can see that for small values of β (up to about 5) the axisymmetric mode
is the most dominant; however, as β increases the m = 1 mode becomes the most dominant
and kmax → 0 as β → ∞.

At larger rotation rates the picture is more complicated as more of the azimuthal modes
become unstable. Results for azimuthal modes m = 0, 1, . . . , 5 at angular velocity ω = 5 are
presented in figure 5 for β = 0.1. In this case, as for a classical jet, the maximum growth rate
is σ1 = √

26 which occurs for the m = 3 mode at kmax = 0. The growth rates of each mode
at k = 0 can be found analytically by taking the limit as k → 0 of equations (25) and (27)
keeping β finite. In this case we find that

s(k = 0) = iω ±
√

(m − 1)(ω2 − m(m + 1)). (33)
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k

σ1

m = 0

m = 1

m = 2

m = 3

m = 4

m = 5

Figure 5. Values of σ1 plotted against k for the azimuthal modes m = 0, 1, . . . , 5 at ω = 5.

Thus provided m � 1 and ω2 � m(m + 1), Re(s) �= 0 and the mode is unstable at k = 0.
It is interesting to note that (33) is independent of the vortex tension parameter β. As β

increases the maximum value of σ1 remains at
√

26 until β ≈ 5 at which the axisymmetric
mode becomes most dominant. As β increases further the m = 1, m = 2 and m = 3 in turn
become the most dominant mode.

6. Discussion

We have identified two governing dimensionless parameters β and ω, which describe,
respectively, the intensity of the vortex tension and the rotation, and studied the linear stability
of a rotating superfluid jet. It is a non-zero value of β which distinguishes a superfluid jet
from a classical inviscid jet, as β is proportional to the quantum of circulation and hence to
Plank’s constant. Our analysis shows that the stability of a superfluid jet is different to that of
a classical jet only as far as non-planar (k �= 0) infinitesimal perturbations are concerned. In
the case of axisymmetric disturbances (m = 0) the range of unstable axial wave numbers k
is the same as in the classical case. What is different is the exponential growth, which is faster
the larger β is. Non-axisymmetric disturbances (m �= 0) become important only at relatively
large values of β and tend to destabilize perturbations in the limit of long wavelengths (k → 0).
Inequality (32) shows that the number of potentially unstable azimuthal modes increases as
the angular velocity increases.

In principle, using jets with different values of β and different rotation rates ω, these
different types of behaviour can be observed. In practice, however, it is difficult to produce
jets with β sufficiently large for the stability curves to be different from the classical ones:
at a = 0.01 cm at � = 100 rad sec−1 we have only β = 0.006. We conclude that the



9654 K L Henderson and C F Barenghi

quantization of the circulation has virtually no observable consequence on the stability of a
rotating superfluid jet, which can thus be considered a remarkable and realistic example of
Eulerian motion.

Appendix

Here we extend the methods of Pedley [16] in which he considered disturbances of a rotating
column of inviscid fluid, to prove two results for a rotating column of superfluid.

We can use equations (18) and (21) to eliminate uφ , uz and p to give a differential equation
for ur , which takes the form

d

dr

(
T

r

d(rur)

dr

)
=

[
1 +

2ωT θk2

s2 + 2ωβθk2
+

2imωθr

s

d

dr

(
T

r2

)]
ur (34)

where

T = r2

m2 + k2r2
θ = 1 +

βk2

2ω
.

Expressed in terms of ur the boundary condition at the free surface may be written as

d

dr
(rur) = 2imωθur

s
+

(1 + ω2 − m2 − k2)ur

T s2
(35)

evaluated at r = 1. Multiplying equation (34) by ru∗
r (where u∗

r represents the complex
conjugate of ur ) and integrating over the radius of the jet and using the boundary condition
(35) gives

2imωθT

s
|ur |2 + (1 + ω2 − m2 − k2)

|ur |2
s2

= A1 + A2 +
4ω2k2θ

s2 + 2ωβk2θ
A3 +

2imωθ

s
A4 (36)

evaluated at r = 1. Assuming that a disturbance exists the integrals A1, . . . , A4 are strictly
positive and given by

A1 =
∫ 1

0

T

r

∣∣∣∣ d

dr
(rur)

∣∣∣∣2

dr A2 =
∫ 1

0
r|ur |2 dr

A3 =
∫ 1

0
rT |ur |2 dr A4 =

∫ 1

0
r2 d

dr

(
T

r2

)
|ur |2 dr.

We can use equation (36) to prove two useful results.

Result 1. A sufficient condition for the linear stability of a general disturbance with axial
wave number k and azimuthal wave number m is that

1 + ω2 − m2 − k2 � 0.

Taking the real part of s times equation (36) we find

Re(s)

[
A1 + A2 +

4ω2k2θ(|s|2 + 2ωβk2θ)

|s2 + 2ωβk2θ |2 A3 − (1 + ω2 − m2 − k2)

|s|2 |ur |2
]

= 0.

Unstable disturbances with Re(s) �= 0 are impossible if the bracketed term is strictly positive.
Thus a sufficient condition for stability is

1 + ω2 − m2 − k2 � 0

Result 2. For axisymmetric disturbances s2 is real.
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For axisymmetric disturbances m = 0 and taking the imaginary part of s2 times equation (36)
we find

Im(s2)

[
A1 + A2 +

4ω2βk4θ

|s2 + 2ωβk2θ |2 A3

]
= 0.

The bracketed term is strictly positive, thus the imaginary part of s2 is zero and therefore s2 is
entirely real for axisymmetric disturbances.
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